↳ Prolog
↳ PrologToPiTRSProof
rev_in_ga([], []) → rev_out_ga([], [])
rev_in_ga(.(X, XS), .(Y, YS)) → U1_ga(X, XS, Y, YS, rev1_in_gga(X, XS, Y))
rev1_in_gga(X, [], X) → rev1_out_gga(X, [], X)
rev1_in_gga(X, .(Y, YS), Z) → U3_gga(X, Y, YS, Z, rev1_in_gga(Y, YS, Z))
U3_gga(X, Y, YS, Z, rev1_out_gga(Y, YS, Z)) → rev1_out_gga(X, .(Y, YS), Z)
U1_ga(X, XS, Y, YS, rev1_out_gga(X, XS, Y)) → U2_ga(X, XS, Y, YS, rev2_in_gga(X, XS, YS))
rev2_in_gga(X, [], []) → rev2_out_gga(X, [], [])
rev2_in_gga(X, .(Y, YS), ZS) → U4_gga(X, Y, YS, ZS, rev2_in_gga(Y, YS, US))
U4_gga(X, Y, YS, ZS, rev2_out_gga(Y, YS, US)) → U5_gga(X, Y, YS, ZS, rev_in_ga(US, VS))
U5_gga(X, Y, YS, ZS, rev_out_ga(US, VS)) → U6_gga(X, Y, YS, ZS, rev_in_ga(.(X, VS), ZS))
U6_gga(X, Y, YS, ZS, rev_out_ga(.(X, VS), ZS)) → rev2_out_gga(X, .(Y, YS), ZS)
U2_ga(X, XS, Y, YS, rev2_out_gga(X, XS, YS)) → rev_out_ga(.(X, XS), .(Y, YS))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
rev_in_ga([], []) → rev_out_ga([], [])
rev_in_ga(.(X, XS), .(Y, YS)) → U1_ga(X, XS, Y, YS, rev1_in_gga(X, XS, Y))
rev1_in_gga(X, [], X) → rev1_out_gga(X, [], X)
rev1_in_gga(X, .(Y, YS), Z) → U3_gga(X, Y, YS, Z, rev1_in_gga(Y, YS, Z))
U3_gga(X, Y, YS, Z, rev1_out_gga(Y, YS, Z)) → rev1_out_gga(X, .(Y, YS), Z)
U1_ga(X, XS, Y, YS, rev1_out_gga(X, XS, Y)) → U2_ga(X, XS, Y, YS, rev2_in_gga(X, XS, YS))
rev2_in_gga(X, [], []) → rev2_out_gga(X, [], [])
rev2_in_gga(X, .(Y, YS), ZS) → U4_gga(X, Y, YS, ZS, rev2_in_gga(Y, YS, US))
U4_gga(X, Y, YS, ZS, rev2_out_gga(Y, YS, US)) → U5_gga(X, Y, YS, ZS, rev_in_ga(US, VS))
U5_gga(X, Y, YS, ZS, rev_out_ga(US, VS)) → U6_gga(X, Y, YS, ZS, rev_in_ga(.(X, VS), ZS))
U6_gga(X, Y, YS, ZS, rev_out_ga(.(X, VS), ZS)) → rev2_out_gga(X, .(Y, YS), ZS)
U2_ga(X, XS, Y, YS, rev2_out_gga(X, XS, YS)) → rev_out_ga(.(X, XS), .(Y, YS))
REV_IN_GA(.(X, XS), .(Y, YS)) → U1_GA(X, XS, Y, YS, rev1_in_gga(X, XS, Y))
REV_IN_GA(.(X, XS), .(Y, YS)) → REV1_IN_GGA(X, XS, Y)
REV1_IN_GGA(X, .(Y, YS), Z) → U3_GGA(X, Y, YS, Z, rev1_in_gga(Y, YS, Z))
REV1_IN_GGA(X, .(Y, YS), Z) → REV1_IN_GGA(Y, YS, Z)
U1_GA(X, XS, Y, YS, rev1_out_gga(X, XS, Y)) → U2_GA(X, XS, Y, YS, rev2_in_gga(X, XS, YS))
U1_GA(X, XS, Y, YS, rev1_out_gga(X, XS, Y)) → REV2_IN_GGA(X, XS, YS)
REV2_IN_GGA(X, .(Y, YS), ZS) → U4_GGA(X, Y, YS, ZS, rev2_in_gga(Y, YS, US))
REV2_IN_GGA(X, .(Y, YS), ZS) → REV2_IN_GGA(Y, YS, US)
U4_GGA(X, Y, YS, ZS, rev2_out_gga(Y, YS, US)) → U5_GGA(X, Y, YS, ZS, rev_in_ga(US, VS))
U4_GGA(X, Y, YS, ZS, rev2_out_gga(Y, YS, US)) → REV_IN_GA(US, VS)
U5_GGA(X, Y, YS, ZS, rev_out_ga(US, VS)) → U6_GGA(X, Y, YS, ZS, rev_in_ga(.(X, VS), ZS))
U5_GGA(X, Y, YS, ZS, rev_out_ga(US, VS)) → REV_IN_GA(.(X, VS), ZS)
rev_in_ga([], []) → rev_out_ga([], [])
rev_in_ga(.(X, XS), .(Y, YS)) → U1_ga(X, XS, Y, YS, rev1_in_gga(X, XS, Y))
rev1_in_gga(X, [], X) → rev1_out_gga(X, [], X)
rev1_in_gga(X, .(Y, YS), Z) → U3_gga(X, Y, YS, Z, rev1_in_gga(Y, YS, Z))
U3_gga(X, Y, YS, Z, rev1_out_gga(Y, YS, Z)) → rev1_out_gga(X, .(Y, YS), Z)
U1_ga(X, XS, Y, YS, rev1_out_gga(X, XS, Y)) → U2_ga(X, XS, Y, YS, rev2_in_gga(X, XS, YS))
rev2_in_gga(X, [], []) → rev2_out_gga(X, [], [])
rev2_in_gga(X, .(Y, YS), ZS) → U4_gga(X, Y, YS, ZS, rev2_in_gga(Y, YS, US))
U4_gga(X, Y, YS, ZS, rev2_out_gga(Y, YS, US)) → U5_gga(X, Y, YS, ZS, rev_in_ga(US, VS))
U5_gga(X, Y, YS, ZS, rev_out_ga(US, VS)) → U6_gga(X, Y, YS, ZS, rev_in_ga(.(X, VS), ZS))
U6_gga(X, Y, YS, ZS, rev_out_ga(.(X, VS), ZS)) → rev2_out_gga(X, .(Y, YS), ZS)
U2_ga(X, XS, Y, YS, rev2_out_gga(X, XS, YS)) → rev_out_ga(.(X, XS), .(Y, YS))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
REV_IN_GA(.(X, XS), .(Y, YS)) → U1_GA(X, XS, Y, YS, rev1_in_gga(X, XS, Y))
REV_IN_GA(.(X, XS), .(Y, YS)) → REV1_IN_GGA(X, XS, Y)
REV1_IN_GGA(X, .(Y, YS), Z) → U3_GGA(X, Y, YS, Z, rev1_in_gga(Y, YS, Z))
REV1_IN_GGA(X, .(Y, YS), Z) → REV1_IN_GGA(Y, YS, Z)
U1_GA(X, XS, Y, YS, rev1_out_gga(X, XS, Y)) → U2_GA(X, XS, Y, YS, rev2_in_gga(X, XS, YS))
U1_GA(X, XS, Y, YS, rev1_out_gga(X, XS, Y)) → REV2_IN_GGA(X, XS, YS)
REV2_IN_GGA(X, .(Y, YS), ZS) → U4_GGA(X, Y, YS, ZS, rev2_in_gga(Y, YS, US))
REV2_IN_GGA(X, .(Y, YS), ZS) → REV2_IN_GGA(Y, YS, US)
U4_GGA(X, Y, YS, ZS, rev2_out_gga(Y, YS, US)) → U5_GGA(X, Y, YS, ZS, rev_in_ga(US, VS))
U4_GGA(X, Y, YS, ZS, rev2_out_gga(Y, YS, US)) → REV_IN_GA(US, VS)
U5_GGA(X, Y, YS, ZS, rev_out_ga(US, VS)) → U6_GGA(X, Y, YS, ZS, rev_in_ga(.(X, VS), ZS))
U5_GGA(X, Y, YS, ZS, rev_out_ga(US, VS)) → REV_IN_GA(.(X, VS), ZS)
rev_in_ga([], []) → rev_out_ga([], [])
rev_in_ga(.(X, XS), .(Y, YS)) → U1_ga(X, XS, Y, YS, rev1_in_gga(X, XS, Y))
rev1_in_gga(X, [], X) → rev1_out_gga(X, [], X)
rev1_in_gga(X, .(Y, YS), Z) → U3_gga(X, Y, YS, Z, rev1_in_gga(Y, YS, Z))
U3_gga(X, Y, YS, Z, rev1_out_gga(Y, YS, Z)) → rev1_out_gga(X, .(Y, YS), Z)
U1_ga(X, XS, Y, YS, rev1_out_gga(X, XS, Y)) → U2_ga(X, XS, Y, YS, rev2_in_gga(X, XS, YS))
rev2_in_gga(X, [], []) → rev2_out_gga(X, [], [])
rev2_in_gga(X, .(Y, YS), ZS) → U4_gga(X, Y, YS, ZS, rev2_in_gga(Y, YS, US))
U4_gga(X, Y, YS, ZS, rev2_out_gga(Y, YS, US)) → U5_gga(X, Y, YS, ZS, rev_in_ga(US, VS))
U5_gga(X, Y, YS, ZS, rev_out_ga(US, VS)) → U6_gga(X, Y, YS, ZS, rev_in_ga(.(X, VS), ZS))
U6_gga(X, Y, YS, ZS, rev_out_ga(.(X, VS), ZS)) → rev2_out_gga(X, .(Y, YS), ZS)
U2_ga(X, XS, Y, YS, rev2_out_gga(X, XS, YS)) → rev_out_ga(.(X, XS), .(Y, YS))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
REV1_IN_GGA(X, .(Y, YS), Z) → REV1_IN_GGA(Y, YS, Z)
rev_in_ga([], []) → rev_out_ga([], [])
rev_in_ga(.(X, XS), .(Y, YS)) → U1_ga(X, XS, Y, YS, rev1_in_gga(X, XS, Y))
rev1_in_gga(X, [], X) → rev1_out_gga(X, [], X)
rev1_in_gga(X, .(Y, YS), Z) → U3_gga(X, Y, YS, Z, rev1_in_gga(Y, YS, Z))
U3_gga(X, Y, YS, Z, rev1_out_gga(Y, YS, Z)) → rev1_out_gga(X, .(Y, YS), Z)
U1_ga(X, XS, Y, YS, rev1_out_gga(X, XS, Y)) → U2_ga(X, XS, Y, YS, rev2_in_gga(X, XS, YS))
rev2_in_gga(X, [], []) → rev2_out_gga(X, [], [])
rev2_in_gga(X, .(Y, YS), ZS) → U4_gga(X, Y, YS, ZS, rev2_in_gga(Y, YS, US))
U4_gga(X, Y, YS, ZS, rev2_out_gga(Y, YS, US)) → U5_gga(X, Y, YS, ZS, rev_in_ga(US, VS))
U5_gga(X, Y, YS, ZS, rev_out_ga(US, VS)) → U6_gga(X, Y, YS, ZS, rev_in_ga(.(X, VS), ZS))
U6_gga(X, Y, YS, ZS, rev_out_ga(.(X, VS), ZS)) → rev2_out_gga(X, .(Y, YS), ZS)
U2_ga(X, XS, Y, YS, rev2_out_gga(X, XS, YS)) → rev_out_ga(.(X, XS), .(Y, YS))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
REV1_IN_GGA(X, .(Y, YS), Z) → REV1_IN_GGA(Y, YS, Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
REV1_IN_GGA(X, .(Y, YS)) → REV1_IN_GGA(Y, YS)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
REV2_IN_GGA(X, .(Y, YS), ZS) → REV2_IN_GGA(Y, YS, US)
U4_GGA(X, Y, YS, ZS, rev2_out_gga(Y, YS, US)) → REV_IN_GA(US, VS)
U1_GA(X, XS, Y, YS, rev1_out_gga(X, XS, Y)) → REV2_IN_GGA(X, XS, YS)
U4_GGA(X, Y, YS, ZS, rev2_out_gga(Y, YS, US)) → U5_GGA(X, Y, YS, ZS, rev_in_ga(US, VS))
REV2_IN_GGA(X, .(Y, YS), ZS) → U4_GGA(X, Y, YS, ZS, rev2_in_gga(Y, YS, US))
REV_IN_GA(.(X, XS), .(Y, YS)) → U1_GA(X, XS, Y, YS, rev1_in_gga(X, XS, Y))
U5_GGA(X, Y, YS, ZS, rev_out_ga(US, VS)) → REV_IN_GA(.(X, VS), ZS)
rev_in_ga([], []) → rev_out_ga([], [])
rev_in_ga(.(X, XS), .(Y, YS)) → U1_ga(X, XS, Y, YS, rev1_in_gga(X, XS, Y))
rev1_in_gga(X, [], X) → rev1_out_gga(X, [], X)
rev1_in_gga(X, .(Y, YS), Z) → U3_gga(X, Y, YS, Z, rev1_in_gga(Y, YS, Z))
U3_gga(X, Y, YS, Z, rev1_out_gga(Y, YS, Z)) → rev1_out_gga(X, .(Y, YS), Z)
U1_ga(X, XS, Y, YS, rev1_out_gga(X, XS, Y)) → U2_ga(X, XS, Y, YS, rev2_in_gga(X, XS, YS))
rev2_in_gga(X, [], []) → rev2_out_gga(X, [], [])
rev2_in_gga(X, .(Y, YS), ZS) → U4_gga(X, Y, YS, ZS, rev2_in_gga(Y, YS, US))
U4_gga(X, Y, YS, ZS, rev2_out_gga(Y, YS, US)) → U5_gga(X, Y, YS, ZS, rev_in_ga(US, VS))
U5_gga(X, Y, YS, ZS, rev_out_ga(US, VS)) → U6_gga(X, Y, YS, ZS, rev_in_ga(.(X, VS), ZS))
U6_gga(X, Y, YS, ZS, rev_out_ga(.(X, VS), ZS)) → rev2_out_gga(X, .(Y, YS), ZS)
U2_ga(X, XS, Y, YS, rev2_out_gga(X, XS, YS)) → rev_out_ga(.(X, XS), .(Y, YS))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
REV2_IN_GGA(X, .(Y, YS)) → U4_GGA(X, rev2_in_gga(Y, YS))
U5_GGA(X, rev_out_ga(VS)) → REV_IN_GA(.(X, VS))
REV_IN_GA(.(X, XS)) → U1_GA(X, XS, rev1_in_gga(X, XS))
U4_GGA(X, rev2_out_gga(US)) → REV_IN_GA(US)
REV2_IN_GGA(X, .(Y, YS)) → REV2_IN_GGA(Y, YS)
U1_GA(X, XS, rev1_out_gga(Y)) → REV2_IN_GGA(X, XS)
U4_GGA(X, rev2_out_gga(US)) → U5_GGA(X, rev_in_ga(US))
rev_in_ga([]) → rev_out_ga([])
rev_in_ga(.(X, XS)) → U1_ga(X, XS, rev1_in_gga(X, XS))
rev1_in_gga(X, []) → rev1_out_gga(X)
rev1_in_gga(X, .(Y, YS)) → U3_gga(rev1_in_gga(Y, YS))
U3_gga(rev1_out_gga(Z)) → rev1_out_gga(Z)
U1_ga(X, XS, rev1_out_gga(Y)) → U2_ga(Y, rev2_in_gga(X, XS))
rev2_in_gga(X, []) → rev2_out_gga([])
rev2_in_gga(X, .(Y, YS)) → U4_gga(X, rev2_in_gga(Y, YS))
U4_gga(X, rev2_out_gga(US)) → U5_gga(X, rev_in_ga(US))
U5_gga(X, rev_out_ga(VS)) → U6_gga(rev_in_ga(.(X, VS)))
U6_gga(rev_out_ga(ZS)) → rev2_out_gga(ZS)
U2_ga(Y, rev2_out_gga(YS)) → rev_out_ga(.(Y, YS))
rev_in_ga(x0)
rev1_in_gga(x0, x1)
U3_gga(x0)
U1_ga(x0, x1, x2)
rev2_in_gga(x0, x1)
U4_gga(x0, x1)
U5_gga(x0, x1)
U6_gga(x0)
U2_ga(x0, x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
REV2_IN_GGA(X, .(Y, YS)) → U4_GGA(X, rev2_in_gga(Y, YS))
U4_GGA(X, rev2_out_gga(US)) → REV_IN_GA(US)
REV2_IN_GGA(X, .(Y, YS)) → REV2_IN_GGA(Y, YS)
Used ordering: Polynomial interpretation [25]:
U5_GGA(X, rev_out_ga(VS)) → REV_IN_GA(.(X, VS))
REV_IN_GA(.(X, XS)) → U1_GA(X, XS, rev1_in_gga(X, XS))
U1_GA(X, XS, rev1_out_gga(Y)) → REV2_IN_GGA(X, XS)
U4_GGA(X, rev2_out_gga(US)) → U5_GGA(X, rev_in_ga(US))
POL(.(x1, x2)) = 1 + x2
POL(REV2_IN_GGA(x1, x2)) = 1 + x2
POL(REV_IN_GA(x1)) = x1
POL(U1_GA(x1, x2, x3)) = 1 + x2
POL(U1_ga(x1, x2, x3)) = 1 + x2
POL(U2_ga(x1, x2)) = 1 + x2
POL(U3_gga(x1)) = 0
POL(U4_GGA(x1, x2)) = 1 + x2
POL(U4_gga(x1, x2)) = 1 + x2
POL(U5_GGA(x1, x2)) = 1 + x2
POL(U5_gga(x1, x2)) = 1 + x2
POL(U6_gga(x1)) = x1
POL([]) = 0
POL(rev1_in_gga(x1, x2)) = 0
POL(rev1_out_gga(x1)) = 0
POL(rev2_in_gga(x1, x2)) = x2
POL(rev2_out_gga(x1)) = x1
POL(rev_in_ga(x1)) = x1
POL(rev_out_ga(x1)) = x1
U5_gga(X, rev_out_ga(VS)) → U6_gga(rev_in_ga(.(X, VS)))
U4_gga(X, rev2_out_gga(US)) → U5_gga(X, rev_in_ga(US))
rev_in_ga([]) → rev_out_ga([])
rev2_in_gga(X, .(Y, YS)) → U4_gga(X, rev2_in_gga(Y, YS))
U6_gga(rev_out_ga(ZS)) → rev2_out_gga(ZS)
rev_in_ga(.(X, XS)) → U1_ga(X, XS, rev1_in_gga(X, XS))
rev2_in_gga(X, []) → rev2_out_gga([])
U1_ga(X, XS, rev1_out_gga(Y)) → U2_ga(Y, rev2_in_gga(X, XS))
U2_ga(Y, rev2_out_gga(YS)) → rev_out_ga(.(Y, YS))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
REV_IN_GA(.(X, XS)) → U1_GA(X, XS, rev1_in_gga(X, XS))
U5_GGA(X, rev_out_ga(VS)) → REV_IN_GA(.(X, VS))
U1_GA(X, XS, rev1_out_gga(Y)) → REV2_IN_GGA(X, XS)
U4_GGA(X, rev2_out_gga(US)) → U5_GGA(X, rev_in_ga(US))
rev_in_ga([]) → rev_out_ga([])
rev_in_ga(.(X, XS)) → U1_ga(X, XS, rev1_in_gga(X, XS))
rev1_in_gga(X, []) → rev1_out_gga(X)
rev1_in_gga(X, .(Y, YS)) → U3_gga(rev1_in_gga(Y, YS))
U3_gga(rev1_out_gga(Z)) → rev1_out_gga(Z)
U1_ga(X, XS, rev1_out_gga(Y)) → U2_ga(Y, rev2_in_gga(X, XS))
rev2_in_gga(X, []) → rev2_out_gga([])
rev2_in_gga(X, .(Y, YS)) → U4_gga(X, rev2_in_gga(Y, YS))
U4_gga(X, rev2_out_gga(US)) → U5_gga(X, rev_in_ga(US))
U5_gga(X, rev_out_ga(VS)) → U6_gga(rev_in_ga(.(X, VS)))
U6_gga(rev_out_ga(ZS)) → rev2_out_gga(ZS)
U2_ga(Y, rev2_out_gga(YS)) → rev_out_ga(.(Y, YS))
rev_in_ga(x0)
rev1_in_gga(x0, x1)
U3_gga(x0)
U1_ga(x0, x1, x2)
rev2_in_gga(x0, x1)
U4_gga(x0, x1)
U5_gga(x0, x1)
U6_gga(x0)
U2_ga(x0, x1)